Waste Acceptance Package for Drum Number 1 Generated at Niagara Falls Storage Site

Prepared for

Buffalo District USACE 1776 Niagara Street Buffalo, NY 14207

May 2006

1634 Eastport Plaza Drive Collinsville, IL 62234 (618)345-0669 (618)345-1281 (Fax)

Under Subcontract to SAIC Dublin, Ohio

Table of Contents NIAGARA FALLS STORAGE SITE (NFSS) DRUM #1 CHARACTERIZATION

Cover Letter

US Army Corps of Engineers Letter

General Engineering Laboratories Certificate of Analysis

Attachment NFSS Waste Profile Sheet

NFSS Drum #1 Chemical Data Tables

Attachment to Waste Profile Sheet

NFSS Radiological Characterization for Drum #1

May 26, 2006 15892 Task 5

Ms. Victoria Guitierrez Customer Service Representative Waste Control Specialists (WCS) 9998 W. Highway 176 Andrews, Texas 79714

Subject:

Updated Submittal of Waste Profile Sheets and Supporting Waste Characterization Data and Information to Obtain Acceptance of Solid Investigation-Derived Waste (IDW), Drum #1,

Niagara Falls Storage Site (NFSS) Lewiston NY

Gentlemen:

Tetra Tech Inc is performing work under subcontract to SAIC on behalf of the US Army Corps of Engineers, Buffalo District. USACE Buffalo District wishes to dispose of Drum #1, which contains investigation-derived waste generated at the NFSS. Enclosed please find Waste Profile Sheets, analytical data, and supporting documentation. These are provided in hard copy and electronically on CD-ROM concerning the contents of Drum #1. We plan to arrange for shipment of Drum #1 to WCS during the summer of 2006.

During telephone discussions between Tetra Tech and WCS, your organization has offered to broker disposal of Drum #1 at the Energy Solutions site in Utah. We understand that the total cost of storage at WCS, transportation from WCS to Energy Solutions, testing, if necessary, and disposal of Drum #1 at Energy Solutions is estimated at \$2000. We understand the actual price may be adjusted (up or down), depending only on surcharges which might be imposed by Energy Solutions, based only on the activity and dose rate of Drum #1. We understand that after receipt, this drum will be securely stored at WCS's Andrews TX facility until WCS arranges for shipment of this drum to Energy Solutions. We understand that WCS will be responsible for communication with Energy Solutions, and preparation of any necessary manifests, profiles, and other documentation concerning Drum #1. We understand WCS will arrange for transportation to and disposal of Drum #1 at Energy Solutions, with no further input necessary from Tetra Tech, SAIC, and/or the United States Army Corps of Engineers, and at no additional cost in excess of \$2000, without our knowledge and approval. We understand that any testing or analysis performed by Waste Control Specialists and/or Energy Solutions will be performed at no additional cost to Tetra Tech, SAIC, and or the United States Army Corps of Engineers.

In accordance with direction provided by SAIC and the United States Army Corps of Engineers, Tetra Tech is requesting that WCS submit a copy of the waste profile sheets, analytical data, and supporting documentation to the Texas Board of Health. For your convenience, all this information is included in the enclosed CD-ROM. We request that Texas Board of Health review this information to ensure that storage of Drum #1 at WCS until it is shipped to Energy Solutions is acceptable, and in accordance with all applicable permits, regulations, and other requirements. We request that the Texas Board of Health provide written documentation concerning its approval for acceptance, storage, and transportation of the waste profiled in the attachment.

Ms. Victoria Gutierrez May 26, 2006 Page 2

Upon completion of disposal of Drum #1, Tetra Tech is requesting written certification from WCS and Energy Solutions concerning the date and manner of disposal. Please plan to furnish these certifications to Tetra Tech for our transmittal to the United States Army Corps of Engineers.

Please contact the undersigned at the telephone number shown if you require any additional information. We look forward to your response concerning acceptance of this drum and confirmation of pricing.

Very truly yours

Robert Bessent

Senior Environmental Engineer

Robert S. Bessert

Thomas Lachajczyk

Project Manager

CC: Ms. Ann Dean, WCS

Dr. Judith Leithner, USACE Buffalo District Ms. Michelle Rhodes, USACE Buffalo District

Ms. Debra Engelgau, SAIC

Momas Lachapsyk.

REPLY TO ATTENTION OF

DEPARTMENT OF THE ARMY

BUFFALO DISTRICT, U.S. ARMY CORPS OF ENGINEERS 1776 NIAGARA STREET BUFFALO, NEW YORK 14207-3199

May 23, 2006

Environmental Engineering

SUBJECT: Disposal of Drum Containing Natural Uranium

Ms. Anne Dean Broad Spectrum Manager Waste Control Specialists, LLC P.O. Box 1129 Andrews, Texas 79714

Dear Ms. Dean:

According to Title I of the Atomic Energy Act of 1954 (AEA 1954), special nuclear material (SNM) is defined as "(1) plutonium, uranium enriched in the isotope 233 or in the isotope 235, and any other material which the Commission, pursuant to the provisions of Section 51, determines to be special nuclear material, but does not include source material; or (2) any material artificially enriched by any of the foregoing, but does not include source material."

Prior to accepting a solid investigative-derived waste (IDW) drum from the Formerly Utilized Sites Remedial Action Program (FUSRAP) Niagara Falls Storage Site (NFSS) in Lewiston, NY for brokering to Envirocare, Waste Control Specialists (WCS) requested that the generator, U.S. Army Corps of Engineers Buffalo District (USACE Buffalo), provide a memorandum for record (MFR) stating that the solid IDW drum contents are not SNM as defined by AEA 1954.

The solid IDW drum of interest, labeled DRUM #1 in the waste profile sheet submitted to WCS, contains a deteriorated drum found on the ground surface during site characterization activities at the FUSRAP NFSS that exhibited elevated levels of natural uranium. The FUSRAP NFSS was used for the storage of various radioactive wastes and residues resulting from the processing of uranium ores during development of the atomic bomb. Many of these materials were delivered to the site in drums, and were subsequently unloaded and placed in various areas of the site for storage.

DRUM #1 was analyzed using Alpha Spectroscopy, Gamma Spectroscopy, and Kinetic Phosphorescence Analyzer (KPA) by General Engineering Laboratories, Inc. (GEL), an USACE certified laboratory. These results are attached and confirm that the uranium in this drum is natural and not enriched uranium. Natural uranium contains 0.72% U-235 by weight. Uranium containing a higher concentration of U-235 is enriched uranium (and defined to be *special nuclear material* in 10 CFR 20.1003), while uranium with a lower concentration is depleted uranium. The percent U-235 by mass according to the sample alpha spectroscopic results for DRUM #1 is 0.82%. Due to the large uncertainties (about 30% of the reported values) associated with the measured concentrations; the calculated enrichment of 0.82% is well within the range of values associated with natural uranium.

However, the most accurate means of determining if a sample of uranium is natural, enriched or depleted is to compare the activity concentrations of the two most prevalent isotopes, i.e., U-238 and U-234. These two isotopes are in secular equilibrium in natural uranium, that is, they have the same activity concentrations. When

uranium is enriched, the concentration of U-234 increases by a greater amount than does U-235 as it is a lighter isotope. A sample of low enriched uranium can be easily identified based on a higher ratio of U-234 to U-238 than present in natural uranium (which has a ratio of 1). Also, since these two isotopes are much more prevalent than U-235, they can be determined more accurately using standard analytical equipment.

The ratio of U-234 to U-238 in the alpha spectroscopy results performed by GEL is 0.994. There is considerable uncertainty associated with the isotopic-specific results, which is likely due to the small sample aliquot used in the analysis and relatively short counting of 8 hours used for these types of analyses. The error could be reduced by using a longer count time, but this was not necessary for this sample, which clearly indicates that the drum contains natural uranium.

The alpha spectroscopy results are considered to be more accurate than the gamma spectroscopy results due to interferences with various gamma rays emitted by other radionuclides that are present in the sample. Since U-234 decays by emission of an alpha particle (with minimal gamma radiation) and has no associated short-lived decay products that decay by beta-particle emission (and gamma rays), no results are provided for U-234 in the gamma spectroscopy analysis. Thus it is not possible to calculate the U-234 to U-238 ratio as was done for the alpha spectroscopy results. While the U-235 to U-238 ratio is higher in the gamma spectroscopy results than the alpha spectroscopy results, these also indicate that the material is likely natural uranium when the reported measurement uncertainties are taken into consideration.

Additionally, plutonium-238 (Pu-238) and Pu-239/240 were not detected using alpha spectroscopy according to the attached DRUM #1 sample results.

Since the sample results are clearly consistent with natural uranium, it is concluded that this drum contains natural uranium and not special nuclear material.

If there are any questions with respect to this memorandum, please feel free to contact me at (716) 879-4234.

Sincerely,

Dr. Judith Leithner

Niagara Falls Storage Site Project Manager U.S. Army Corps of Engineers Buffalo District

Wedith S. Leithner

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow,

Certificate of Analysis

Company: Maxim Technologies, INC.

Address:

1908 Innérbelt Bus. Center Dr. St. Louis, Missouri 63114-5700

Contact

Paul Smith

Project:

Niagara Falls Storage Site

Protect: MAXT00199 Client ID: MAXT001

Report Date: December 19, 2001

Page 1 of 2

Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:

UNKNOWN1-2451 52355001 Solid

19-NOV-01 20-NOV-01 Client 16%

				No No.								
Parameter	Qualifier	Result		DI.	RL	Units	Di		ystDate			Method
Rad Alpha Spec	and the state of t	om to the same of	F	enancement of the Control of the Con	CONTRACTOR STATE		okar, mengunung sasupun	ing member purposes an	tradit bermanya (Miran) yang ang		erams, exchas IV .	Pres - Paris - 100 - 100
Alphasper Th. Solid												
Thorism-228		0.380	+/-0.202	0.0712	1.00	pCVg		HE	12/09/01	1307	123183	1
Thorium-230		12.8	+/-2.57	0.264	1.00	oCirg						
Thorium-232		0.186	44-0 136	0.0697	1.00	pCug						
Alphaspec U. Solid												
Uranium-233/234		7960	+/-2160	20.9	1.00	pCi/g		H.E	12/12/01	0917	123184	2
Uranium-235/236		425	-V-132	13.7	1.60	ECU 2						
Uranium-238		8010	+1-2180	7.76	1.00	pCug						
Rad Gamma Spec												
Gammaspez, Gamma, S	olid (Standard L	ásc)										
Actinoun-227	ţ;	0.00	1.1.48	1.69	0.500	pCi/g		CRB	12/06/01	0209	121942	3
Americian 241		9.88	6/-1.30	(),488	0.100	pCi/g						
Cesium-137	ť	0.0426	H-0.0878	0.147	0.100	Cite						
Cobalt-60	U	-0.0188	+7-0.0395	0.0649	0.100	pCi/g						
Preassoun-40		2.91	w 0.784	0.572		pCMg						
Protectionum-251	U	3.71	41-3.63	6.10	1.20	φCM _E						
Kadium-226		2.32	+1-0.383	0.260	0.100	pCvg						
Radium-228	υ	0.161	+/-0.219	0.378	0,200	pC√g						
Therium-228	U	6.207	→2 0.138	0.232	0.100	pcue						
Ставина-235		230	11.44.6	240	0.500	pC⊮g						
Uraniora 238		3380	+1-633	4.59	1.50	pCi/g						
Rad Total U												
KPA, Total U. Solid												
Total Uranium		22000	41-865	4.43	1.00	ug/ç		ATB	1 12/14/01	14.28	122462	4

The following Prep Methods were performed

Method	Description	Analyst	Date	Time	Frep Batch
SW846 3550B	3550B BNA Soil Prep-8270C Analysis Fed	HON	11/28/01	1104	122088
SW\$46 3550B	35508 Pesticale/PCB Prep Sail	RIMI	11/29/01	1539	122418
SW846 3050B	846 3050BS PREP	AJM	11/30/01	1245	122344
Ash Scal Prep	Ash Soil Prep RAD A-021, A-0218. A-026	KMI	11/27/01	1625	122446
Dry Soil Prep	Dry Soil Prep RAD A-621,A-6218,A-626	KMI	11/26/01	0919	121894
SW846 7471A	EPA 7471A Mercury Prep Soil	ARD	12/08/01	1130	122832
SW\$46 3050B	ICP-MS 3050BS PREP	AJM	12/07/01	1530	124727

P.O.Box 30712 - Charleston, SC 29417 - 2040 Savage Road - 29407 (843) 556-8171 • Fax (843) 766-1178

GENERAL ENGINEERING LABORATORIES

Meeting today's needs with a vision for tomorrow.

Certificate of Analysis

Address:

Company: Maxim Technologies, INC.

1908 Innerbelt Bus. Ceater Dr. St. Louis, Missour: 63114-5700

Contact:

Paul Smith

Project

Niagara Falls Storage Site

UNKNOWN1-2451

Page 2 of 2

Client Sample ID: Sample ID:

52355001

Project: Client ID:

MAXT00199 MAXT001

Report Date: December 19, 2001

Anna Contraction of the Contract of the Contra	and the second second is the second second second	S. Constitution of the service of th	**************************************	Calculation and many designation of the section of	an on warming appropriate to the tra-	~*************************************	***************************************		Market Market and American American States
Parameter	Qualifier	Result	DI.	RL	Units	DF	AnalystDate	Time	Batch Method
The first of the control of the cont		and the second second second second second second	$\{(x,y,y,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,z,$		لحسينه سيوسون بالمراجع بالمراجع المراجع المراجع المراجع				and the same of the same of the same
SW846 3050B	ICP-MS 3050B	5 PREP	1	RCD1	11/29/01	1045	122565		

	nalytical Methods were performed	takana atau atau atau ang p <mark>ininana manamana manaman kalaman na manan</mark> akata taman na paga paga da manan ng paga atau atau atau atau atau atau atau a
Method	Description	Analysi Comments
1	DOE EMIL HASL 300	ogganisations produced that the execution of the first consistence of the execution of the
2	DOE EMIL HASI, 300	
3	DOE EMIL HASE, 300	
4	ASTM D 3174	

Notes:

The Qualifiers in this report are defined as follows:

- Indicates the analyte is a surrogate compound.
- < Actual result is less than amount reported
- Actual result is greater than amount reported
- В Analyte found in the sample as well as the associated blank.
- Concentration exceeds instrument calibration range
- Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- Indicates the compound was analyzed for but not detected above the detection limit
- UI Uncertain identification for gamma spectroscopy.
- X Lab-specific qualifier must be fully described in case narrative and data summary package

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure This data report has been prepared and reviewed in accordance with General Engineering Laboratories, Inc. standard operating procedures. Please direct any questions to your Project Manager, Gina. Anderson.

Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 20407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: Maxim Technologies, INC. Address:

1908 Innerbelt Bus, Center Dr.

St. Lauris, Missouri 53114-5700

Report Date: August 21, 2003

MAXT00199

MAXT001

Client ID:

Page 1 of 2

Contact:

Paul Speth

Project:

Niagara Falls Storage Site

Client Sample ID:

RS-DRUM1-3368

83797020

Soil 08-JUL-03 14:00

Collect Date: Receive Date:

Sample ID:

Matrix:

10-JUL-03

	Collector		Client	the second section and the second		and the state of t			
Parameter	Qualifier	Result		DI.	KL	Units DF	AnalystDate	Time Batch	Method
Rad Alpha Spec Analys		C. COMMON	6305 1 1	And the second of the second o			,		
Alphaspec Pu, Solid									
Plutemann-238	li li	-0.128	+7-0.133	0.556	1.00	pCu/g	AS1 08/12/0	3 1319 267658	1
Photomosa 239/240	u	0.0102	-7-0,0786	9.252	1.00	pCi/g			
Rad Cax Flow Proporti	ional Counting								
GFPC, \$199, solid									
Stemann 90	11	0.169	+7-0.266	2.60]	2.00	prien	AB2 98/07/0	3 1551 266729	2
Plutemam-238 Plutemam-239/340 Rad Gas Flow Proposti GFPC, 8598, solid	U ional Counting	0.0162	-7-0,0786	9.151	1.00	bC5§			

The following	Prep	Methods	werep	erformed
Method			errintle	

Method	Description	Anal	and the same of th	Time	Prep Batch
Ash Soil Prep	Ash Soil Prep. GL-RAD-A-9219	MIM		1346	262586
Dry Soil Prep	Dry Seal Prep GL-RAD-A-021	MIM	07/11/03	1340	262585

The following Analytical Methods were performed

Method	Description	Analyst (
1	DOE EML HASL-300, Pu-11-RC Modified	

2 EPA 905 0 Modified

Notes:

The Qualifiers in this report are defined as follows:

- Result is less than amount reported.
- Result is greater than amount reported.
- Target analyte was detected in the sample as well as the associated blank.
- BD Flag for results below the MDC or a flag for low tracer recovery.
- E Concentration of the target analyte exceeds the instrument calibration range.
- Analytical holding time exceeded. Н
- Indicates an estimated value. The result was greater than the detection limit, but less than the reporting limit.
- The response between the confirmation column and the primary column is >40%D
- Indicates the target analyte was analyzed for but not detected above the detection limit.
- UI Uncertain identification for gamma spectroscopy.
- Lab-specific qualifier-please see case narrative, data summary package or contact your project manager for details.
- QC Samples were not speked with this compound.
- Sample preparation or preservation holding time exceeded.

The above sample is reported on a dry weight basis except where prohibited by the analytical procedure,

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road. Charleston SC 29407 - (843) 558-8171 - www.gel.com

Certificate of Analysis

Company :	Maxim Technologies, INC. 1908 Innerhelt Bus. Center Dr.								
August.	St. Louis, Missouri 63114-5700			i	Report Date:	Augur	a 21, 2	003	
Contact:	Paul Smith						_		_
Project	Niagara Palls Storage Site					Page	Z	of	Į.
	Client Sample ID: RS-D Sample ID: 8379	RUM1-3368 020	· · · · · · · · · · · · · · · · · · ·	Project: Client ID:	MAXTO MAXTO				
Parameter	Qualifier Result	DI.	RL	Units Di	Analysti):ate	Time	Batt	h Merns

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratorius, LLC standard operating procedures. Please direct any questions to your Project Manager, Edith Kent.

Haveney arou

Facility Address For Manifest: 9998 W. Hwy. 176 Andrews, TX 79714	SAMPLE - FedEx/UPS Address: 9998 W. Hwy. 176 Eunice, NM 88231	И	vCs	Business Mailing Address: PO Box 1129 Andrews, TX 79714	(50:	tracts: 3) 789-278 5) 394-43(15) 394-34	00
	Lepresentative		rofile Sheet nibit "B"	Profil	<u>TBD</u> e Number		
WCS EPA ID # TXD		Attachment for	e Dadionative Mat	WCS State ID/ erial (includes NORM/Exe			
	A Analytical X Radiological			re Sample: Yes No.		3101	
	e treatment methods:	**************************************		l for Invoicing: X			
SECTION 1 Generator Name: Bu Engineers	uffalo District – US Army Co	orps of		oilling information is the pany: Tetra Tech, Inc.	same addre	ss.	
Physical Address: 17	76 Niagara Street		Mail Addres	s: 1634 Eastport Plaza l	Drive	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
City, State, Zip: Buf				Lip: Collinsville, IL 62		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Mr. Dennis Rimer, Site Super	rintendent	Billing Conta	act: Bob Bessent ert.Bessent@tetratech.co	***************************************		
Phone #: 716-879-44			Phone #: 618		#: 618-345		
	dress: Tetra Tech, Inc.; 163	4 Eastport Pla	za Drive; Collin	sville, IL 62234; ATTN:	Mr. Bob Bo	essent	
EPA ID#: NY7890	Municipal PST W	aste 🔲 ias Non-Exen	State ID#: D Universal Waste		CESQG		
Waste Name: Solid W	aste: This drum was found on-		edial Investigation	a Activities at the Niagara F	alls Storage S	Site, Lewis	iton.
Is this a US EPA haza additional pages if nec State Waste Code #: C		If yes, list all	codes including a	ll LDR subcategories – e.		ides (attac	:h
	N/A	Yes No	RCRA Exempt	Waste (List Reference	N/A)	Yes	No

Range Totals Must Be ≥ 100%

🛮 Percentage by Weight

Range

%

 \boxtimes

Actual/Avg.

100%

 \times

 \times

 \boxtimes

 \boxtimes

Ø

Regulated Subpart CC Waste

Does waste contain sorbents

(If yes, are sorbents biodegradeable?

Waste soil subject to LDR alternate

Waste debris subject to LDR alternate

Does debris contain <85ppm Volatile

Physical Composition Actual/Avg.

(VOC>500ppm)

treatment standards

treatment standards

Organic Compounds?

Range

%

 \boxtimes

Percentage by Volume

%

 \boxtimes

 \boxtimes

 \boxtimes

 \boxtimes

If yes, list:

Drum (Drum #1)

TSCA regulated for PCB's Concentration?

Does non-debris waste requiring treatment

Compounds? (If yes, analysis may be required)

Does material contain any regulated UHC's

SECTION 4 Waste Composition

Regulated Ozone Depleting Substance

Asbestos Regulated Material

Benzene NESHP Regulated

Physical Composition

Solids within 1 Solid Waste

contain <85ppm Volatile Organic

(If yes, is material friable?

Waste Profile Number: TBD

Metals XTCL	P 🛭 Totals	⊠ Gener	ator's Kn	owledge		pm ppl	b	-,		31330 174		
Antimony: See att		Cadmium:	······································			nium:			T	Mercur	y:	
for metals data												
Arsenic:		Chromium:			Silve					_		
Barium:		Lead:			Thal	lium:						<260 ppm totals
Beryllium:		Nickel:			Zinc							>260 ppm totals
Other Chemical	Constituents					ppm	_ p	pb]%	by wei	<u>z</u> ht	☐ % by volume
Bromine: See atta					Benz	ene:		TCLF	•	Tota	ils	Gen. Knowledge
analytical results	(formerly Pgs. 3	93-396 of p	<u>revious sul</u>	omittal)							- 1	
%								F			<u> </u>	··· <u>//-</u>
	6							TCLF		Tota		Gen. Knowledge
Iodine: 9						:		TCLF		Tota		Gen. Knowledge
		enable	Reactive	3	 	:	- -	TCLF		Tota		Gen. Knowledge
Sulfides:	Total Re	active						TCLF		Tota		Gen. Knowledge
				***	•			or age			nica	constituents
SECTION 5 Was		 	point F	pH		Turbidi				scosity	+	Fuel Values
Liquid%	# of Layers 1	Note 1		0-2		Transpar	ent			Light	12	<5,000 BTU
Solid 100%	Color	Actual		☐ > 2.1	4	☐ Transluce	a=+4		v) NA	vater)	1	IA.
Sludge%	Color Odor					Opaque	CIH			Medium] 5,000-10,000
Debris %	OdorSpecific Gravity					Other				(syrup)	-	BTU
⊠% by weight	Density	1 3		>12.		NA(no analy	/sis`	, li		leavy	١r]>10,000 BTU
☐% by volume		.		-	Ψ 1 7	131.5(222.5(344)	<u> </u>	' '		syrup)	-	
Other Character	ristics of Waste	-	None	Apply					7	J		*****
Yes No			Yes No					Yes	N	Ю		
	kidizer			Dioxi	n List	ed			Σ	a Liq	uid (Organic Peroxide
				(Store	ige Or			🖳	K			t acceptable)
	plosive (not acc	eptable)		. (:	not acc	r Etiological ceptable)			Σ	₫ Fur	ning/	Smoking Waste
	rophoric (not ac	cceptable)		Putre	scible	(not acceptable	e)		Σ			zed Gasses aerosols, not acceptable)
	ater Reactive	<u>, , , , , , , , , , , , , , , , , , , </u>		Auto	polym	erizable		$I\Pi$	Σ			rganic Peroxide
SECTION 6 Shi	pping Informa	tion DOT					Re	gulated	-			
Hazard Class/Div		ID# (UN/N		-		ing Group (PC				RQ		
Soft Top Roll		Vac Ta				(Type: F	iber,	Poly, Ste	el)		y 1 e	stimated
Hard Top Ro			Day a- C	or Cools		5 gal. (Steel 8	5-g	al OP)		Frequer		
Gondola	11011		Box or Sup Wrapped P			0 gal. 5 gal.		· · · · · · · · · · · · · · · · · · ·	\dashv	riequei	uy I	/1
Intermodal			ner Packagi			gal			\dashv			cked Drums:
Tanker			ПB-12	115	·	gal.			\dashv	Ty	ре <u>1</u>	Size <u>85-gal.</u>
Other, please	enecify: 53' Ro				<u> </u>	gas.						
SECTION 7 Ce		A I LAMES WI	ui i iactoi									
SECTION / CC	HIICAHUH											
The information	contained herei	n is based or	n 🖾 genera	itor's kno	wledge	and/or 🛛 an	alvt	ical da	ta.]	l hereby	certi	fy that the above
												liberate or willful
omissions of con												
provided to WCS												
materials describ	ed by this docu	ment, and th	at the meth	ods of an	alysis (used are the ap	pro	priate :	anal	ytical me	thoc	ls as specified in
the current editio	ns of EPA (SW	-846) or equ	iivalent me	thods.								//
1 Dona	in Kinn	11		Mar IN-			r				-/	9/2006
- CUV	ar jujna	\mathcal{M}				mer, NFSS Sit	ie S	uperm	end	ent _		The same
218	nature			rm	ucu/ i y	ped Name						Date

Drum #1

	Semivol	atile Organic Co EPA Method	mpounds (ug/Kg)		
	Niegero Eollo C				
	Niagara Falis 5	torage Site (Nr.	SS), Lewiston, New York UNKNOWN1-2451		
Sample No.				4	
Drum Tag Num	iber		<u>1</u> 52355001	4	
Lab ID				-	
Batch No.			122089	4	
Collected Date			11/19/2001		
Received Date			11/20/2001	Estimated	TCLP
Extraction Date	e		11/28/2001	Maximum	
Analysis Date			12/11/2001	Leachate	Regulatory
SDG Dilution Factor			S-4-22	Concentration	Limit
		7	1	(ug/L)	ug/L
CAS Number	·	EPA HW No.	Results		
120-82-1	1,2,4-Trichlorobenzene	-	397 U		-
95-50-1	1,2-Dichlorobenzene	-	397 U	-	-
541-73-1	1,3-Dichlorobenzene	-	397 U		
106-46-7	1,4-Dichlorobenzene	D027	21.4 JB	1.07	7500
95-95-4	2,4,5-Trichlorophenol	D041	397 U	19.85	400000
88-06-2	2,4,6-Trichlorophenol	D042	397 U	19.85	2000
120-83-2	2,4-Dichlorophenol		397 U	+	_
105-67-9	2,4-Dimethylphenol	<u> </u>	397 U	-	*
51-28-5	2,4-Dinitrophenol	<u> </u>	794 U	-	-
121-14-2	2,4-Dinitrotoluene	D030	397 U	19.85	130
606-20-2	2,6-Dinitrotoluene	<u> </u>	397 U	-	-
91-58-7	2-Chloronaphthalene	<u>- </u>	39.7 U	-	-
95-57-8	2-Chlorophenol		6J	-	-
534-52-1	2-Methyl-4,6-dinitrophenol	•	397 U	-	-
91-57-6	2-Methylnaphthalene		39.7 U	-	•
88-75-5	2-Nitrophenol	-	397 U	-	-
91-94-1	3,3'-Dichlorobenzidine	-	397 U	-	
101-55-3	4-Bromophenylphenylether	-	397 U		
59-50-7	4-Chloro-3-methylphenol	<u> </u>	397 U	-	-
106-47-8	4-Chloroaniline	-	397 U	-	-
7005-72-3	4-Chlorophenylphenylether	-	397 U	-	-
100-02-7	4-Nitrophenol	•	397 U	-	-
83-32-9	Acenaphthene	•	39.7 U	-	-
208-96-8	Acenaphthylene	-	39.7 U	-	-
120-12-7	Anthracene	•	39.7 U	-	-
56-55-3	Benzo(a)anthracene	-	39.7 U	-	-
50-32-8	Benzo(a)pyrene	-	39.7 U	-	-
205-99-2	Benzo(b)fluoranthene	-	39.7 U	•	-
191-24-2	Benzo(g,h,i)perylene	-	39.7 U	-	-
207-08-9	Benzo(k)fluoranthene	•	39.7 U	-	-
111-91-1	bis(2-Chloroethoxy)methane	-	397 U	-	-
111-44-4	bis(2-Chloroethyl)ether		397 U	-	-
108-60-1	bis(2-Chloroisopropyl)ether	-	397 U	-	*
117-81-7	bis(2-Ethylhexyl)phthalate	*	397 U	, -	-

Drum #1

	Semivolatile C	Organic Compo	ounds (ug/Kg)		
	EF	A Method 8270	oc		
	Niagara Falls Storag	e Site (NFSS),	Lewiston, New York	(
Sample No.			UNKNOWN1-2451		
Drum Tag Numb	ier		1		
Lab ID			52355001		
Batch No.			122089		
Collected Date			11/19/2001		
Received Date			11/20/2001	Estimated	TCLP Regulatory
Extraction Date			11/28/2001	Maximum	
Analysis Date			12/11/2001	Leachate	
SDG			S-4-22	Concentration	Limit
Dilution Factor			1	(ug/L)	ug/L
CAS Number	Parameter	EPA HW No.	Results		
85-68-7	Butylbenzylphthalate		397 U	-	-
86-74-8	Carbazole	-	397 U	+	-
218-01-9	Chrysene	-	39.7 U	-	-
53-70-3	Dibenzo(a,h)anthracene	-	39.7 U	<u>.</u>	-
132-64-9	Dibenzofuran	-	397 U		-
84-66-2	Diethylphthalate	-	397 U	_	-
131-11-3	Dimethylphthalate	-	397 U	-	-
84-74-2	Di-n-butylphthalate		397 U	-	-
117-84-0	Di-n-octylphthalate	-	397 U	-	-
206-44-0	Fluoranthene	-	39.7 U	-	-
86-73-7	Fluorene	20	39.7 U	+	-
118-74-1	Hexachlorobenzene	D032	397 U	19.85	130
87-68-3	Hexachlorobutadiene	D033	397 U	19.85	500
77-47-4	Hexachlorocyclopentadiene	-	397 U		-
67-72-1	Hexachloroethane	D034	397 U	19.85	3000
139-95-5	Indeno(1,2,3-cd)pyrene	*	39.7 U	-	-
78-59-1	Isophorone	-	397 U	_	-
106-44-5	m,p-Cresols	D024/D025	397 U	19.85	200000
99-09-2	m-Nitroaniline	-	397 U	<u></u>	-
91-20-3	Naphthalene	-	39.7 U	+	-
98-95-3	Nitrobenzene	D036	397 U	19.85	2000
621-64-7	N-Nitroso-di-n-propylamine	-	397 U		+
86-30-6	N-Nitrosodiphenylamine	-	397 U	<u>+</u>	-
95-48-7	o-Cresol	D023	397 U	19.85	200000
88-74-4	o-Nitroaniline	*	397 U	-	-
87-65-5	Pentachlorophenol	D037	397 U	19.85	100000
85-01-8	Phenanthrene	*	39.7 U		*
108-95-2	Phenol	-	12.3 J	+	-
100-01-6	p-Nitroaniline	lp.	397 U	-	-
129-00-0	Pyrene	-	39.7 U	-	-

Drum #1

	Volatile O	rganic Compo	unds (ug/Kg)		
		PA Method 82			
	Niagara Falls Stora	ge Site (NFSS), Lewiston, New Yo	rk	
Sample No.			UNKNOWN1-2451		
Drum Tag Num	iber		1		
Lab ID			52355001		
Batch No.			122089		
Collected Date			11/19/2001		
Received Date			11/20/2001	Estimated	
Extraction Dat	e		11/29/2001	Maximum	TCLP
Analysis Date			11/29/2001	Leachate	Regulatory
SDG			S-4-22	Concentration	Limit
Dilution Factor			1	(ug/L)	ug/L
CAS Number	Parameter	EPA HW No.	Results		
71-55-6	1,1,1-Trichloroethane	*	1 U	+	No.
79-34-5	1,1,2,2-Tetrachloroethane	-	10	-	<u>.</u>
79-00-5	1,1,2-Trichloroethane	-	1 U	=	-
75-34-3	1,1-Dichloroethane	-	1 U	_	-
75-35-4	1,1-Dichloroethene	D029	1 U	0.0500	700
107-06-2	1,2-Dichloroethane	D028	1 U	0.0500	500
78-87-5	1,2-Dichloropropane	*	1U	-	-
78-93-3	2-Butanone	D035	5.1 U	0.2550	200000
591-78-6	2-Hexanone	-	5.1 U	+	-
108-10-1	4-methyl-2-pentanone	-	5.1 U	-	-
67-64-1	Acetone	-	20.2 B	_	_
71-43-2	Benzene	D018	1 U	0.0500	500
75-27-4	Bromodichloromethane	-	1 U	Je.	-
75-25-2	Bromoform	_	1 U	m	-
74-83-9	Bromomethane	-	1 U	+	-
75-15-0	Carbon disulfide	•	5.1 U	+	-
56-23-5	Carbon tetrachloride	D019	1 U	0.0500	500
108-90-7	Chlorobenzene	D021	1 U	0.0500	100000
75-00-3	Chloroethane	-	1U		-
67-66-3	Chloroform	D022	1U	0.0500	6000
74-87-3	Chloromethane	•	1 U	-	-
156-59-2	cis-1,2-Dichloroethene	-	1 U	-	-
10061-01-5	cis-1,3-Dichloropropene	-	1 U		-
124-48-1	Dibromochloromethane	+	1 U	-	_
100-41-4	Ethyl Benzene		1 U	-	-
75-09-2	Methylene chloride		5.1 U	-	-
100-42-5	Styrene	-	10		-
127-18-4	Tetrachloroethene	D039	1 U	0.0500	700
108-88-3	Toluene		1 U	-	
156-60-5	trans-1,2-Dichloroethene	-	1 U		-
10061-02-6	trans-1,3-Dichloropropene	•	1 U	-	-
79-01-6	Trichloroethene	D040	1 U	0.0500	500
75-01-4	Vinyl chloride	D043	1 U	0.0500	200
1330-20-7	Xylenes (total)	-	3.1 U		

WCS Attachment to Waste Profile Sheet

WASTE CONTROL SPECIALISTS LLC

For Radioactive Material

PROFILE #:TBD

Спеск Арргоргіаtе Вох:	⊠ Storage Only □ Direct Disposal	☐ Treatment/Disposal		nt/3" Party Disposal e: Energy Solutions (UT); virocare		
Radioactive Characteristic	s: Mixed					
Chemical Form: Solid Wastorage Site, Lewiston, N		um was found during Reme Investigation)	dial Investigation Activ	ities at the Niagara Falls		
Is material waste (Check o	ne):		xempt (Check one):			
If Waste, what waste class (see Title 10 CFR 61.55 at	nd 25 TAC 289.202 (ggg)		V/A			
Is material NORM (Check Yes	(Check one):			ation rate: 1.16 pCi/m²/sec		
Grams of special nuclear r			235 <u>0</u>			
Highest dose rate in mR/h drums during loading producing		At I it. Health	Physicist will monitor			
Are the containers overpage		Yes No				
		1 85-gallon overpack drum)	will be placed in a 53'	Box Trailer with Tractor to		
				care), UT. USACE/Buffalo		
				treatment/disposal process.		
<7.35 (est.) Total Cubic F	eet					
Radioactive Constituent						
List all radionuclides pres	ent in the waste, the conc	entration pCi/gm and the tot	al activity in millicuries	. (Attach additional sheets		
	ent in the waste, the conc	elow.)		:. (Attach additional sheets		
List all radionuclides pres if necessary – please use t	ent in the waste, the conce he same table format as b	elow.) Concentration l	Range (pCl/gm)			
List all radionuclides pres if necessary – please use t Nuclide	ent in the waste, the conce he same table format as b	concentration Concentration Max.	Range (pCl/gm) Avg	Total Activity (mCl)		
List all radionuclides pres if necessary – please use t Nuclide Ra-226	ent in the waste, the conce he same table format as b Min. 2.32	Concentration Max.	Range (pCl/gm) Avg. 2.32	Total Activity (mCl) 0.00078		
List all radionuclides pres if necessary – please use t Nuclide Ra-226 Ra-228	Min. 2.32 0.161U	Concentration: Max. 2.32 0.161U	Range (pCl/gm) Avg. 2.32 0.161U	Total Activity (mCl) 0.00078 0.00005		
List all radionuclides pres if necessary – please use t Nuclide Ra-226 Ra-228 Th-228	Min. 2.32 0.161U 0.207U	Concentration I Max. 2.32 0.161U 0.207 U	Range (pCl/gm) Avg. 2.32 0.161U 0.207 U	Total Activity (mCl) 0.00078 0.00005 0.00007		
List all radionuclides pres if necessary – please use t Nuclide Ra-226 Ra-228 Th-228 Th-230	Min. 2.32 0.161U 0.207U 12.8	Concentration Max. 2.32 0.161U 0.207 U 12.8	Range (pCl/gm) Avg. 2.32 0.161U 0.207 U 12.8	Total Activity (mCi) 0.00078 0.00005 0.00007 0.00433		
List all radionuclides pres if necessary – please use t Nuclide Ra-226 Ra-228 Th-228 Th-230 Th-232	Min. 2.32 0.161U 0.207U 12.8 0.186	Concentration Max. 2.32 0.161U 0.207 U 12.8 0.186	Range (pCl/gm) Avg. 2.32 0.161U 0.207 U 12.8 0.186	Total Activity (mCl) 0.00078 0.00005 0.00007 0.00433 0.00006		
List all radionuclides pres if necessary – please use t Nuclide Ra-226 Ra-228 Th-228 Th-230 Th-232 U-233/234	Min. 2.32 0.161U 0.207U 12.8 0.186 7960	Concentration Max. 2.32 0.161U 0,207 U 12.8 0.186 7960	Range (pCl/gm) Avg. 2.32 0.161U 0.207 U 12.8 0.186 7960	Total Activity (mCi) 0.00078 0.00005 0.00007 0.00433 0.00006 2.689		
Nuclide Ra-226 Ra-228 Th-228 Th-230 Th-232 U-233/234 U-235/236	Min. 2.32 0.161U 0.207U 12.8 0.186 7960 425	Concentration Max. 2.32 0.161U 0.207 U 12.8 0.186 7960 425	Avg. 2.32 0.161U 0.207 U 12.8 0.186 7960 425	Total Activity (mCi) 0.00078 0.00005 0.00007 0.00433 0.00006 2.689 0.1436		
List all radionuclides pres if necessary – please use t Nuclide Ra-226 Ra-228 Th-228 Th-230 Th-232 U-233/234	Min. 2.32 0.161U 0.207U 12.8 0.186 7960 425 8010	Concentration Max. 2.32 0.161U 0,207 U 12.8 0.186 7960	Range (pCl/gm) Avg. 2.32 0.161U 0.207 U 12.8 0.186 7960	Total Activity (mCi) 0.00078 0.00005 0.00007 0.00433 0.00006 2.689		
Nuclide Ra-226 Ra-228 Th-228 Th-230 Th-232 U-233/234 U-235/236 U-238 Generator's Certificatio The information contained and attached description is omissions of composition provided to WCS is repre	Min. 2.32 0.161U 0.207U 12.8 0.186 7960 425 8010 n: d herein is based on ⊠ ge s complete and accurate to properties exist and that a sentative of all materials of s document, and that the rA (SW-846) or equivalent	Concentration Max. 2.32 0.161U 0.207 U 12.8 0.186 7960 425 8010 enerator knowledge and/or part of the best of my knowledge all known or suspected hazardescribed by this document, methods of analysis used are at methods.	Range (pCl/gm) 2.32 0.161U 0.207 U 12.8 0.186 7960 425 8010 Analytical data. I here and ability to determine rds have been disclosed that the materials tested the appropriate analytic	Total Activity (mCi) 0.00078 0.00005 0.00007 0.00433 0.00006 2.689 0.1436 2.760 2.760 2.690 2.760 2.		

Drum# 1

RAD (pCi/g) and Total Uranium (ug/g)
EPA Method 900, 905, HASL 300, ASTM D5174, GL-RAD-A-041
Niagara Falls Storage Site (NFSS), Lewiston, New York

	o otorago onto (m oo), nome	LINUCNION/NIA 2454
Sample No.		UNKNOWN1-2451
Drum Tag Number	1	
Lab ID	52355001	
Batch No.		121942
Collected Date		11/19/2001
Received Date	11/20/2001	
Analysis Date		12/6/2001
SDG		S-4-22
CAS Number	Parameter	Results
14952-40-0	Actinium-227, Gamma	0 U
14596-10-2	Americium-241, Gamma	9.88
10045-97-3	Cesium-137, Gamma	-0.0426 U
10198-40-0	Cobalt-60, Gamma	-0.0188 U
13966-00-2	Potassium-40	2.91
14331-85-2	Protactinium-231, Gamma	3.71 U
13982-63-3	Radium-226, Gamma	2.32
15262-20-1	Radium-228, Gamma	0.161 U
14274-82-9	Thorium-228, Alpha	-0.207 U
14269-63-7	Thorium-230, Alpha	12.8
7440-29-1	Thorium-232, Alpha	0.186
7440-61-1	Total Uranium	22000
13966-29-5	Uranium-233/234, Alpha	7960
15117-96-1	Uranium-235/236, Alpha	425
7440-61-1	Uranium-238, Alpha	8010